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1 Background

We first define a partially observable Markov decision process using the following tuple. Note that we are
operating in the finite horizon setting.

G = (S,A,O,R,P,O, µ,H)

Elements S, A, and O are the set of states, actions, and observations respectively. Function R : S×A → R
determines the reward for taking an action in a given state. P : S×A → ∆ S provides the probability
distribution for the next state, given the current state and the action taken. O : S → ∆O determines the
probability of receiving any given observation in a specific state. µ represents the initial state distribution.

We can also use time-dependent transitions, reward functions, and emission kernels. Time-dependent quan-
tities will be denoted by a subscript representing the timestamp.

Interaction with a partially observable Markov decision process is as follows. First, the initial state S1 is
sampled from µ. Then for each time step h until the horizon H, the following interaction is repeated.

1. Observation Oh is sampled from O (· | Sh) and is presented to the agent.

2. The agent follows some policy π to determine action Ah.

3. Reward Rh = R (Sh, Ah) is presented to the agent.

4. The next state Sh+1 is sampled from P (· | Sh, Ah).

We also assume that there is an initial observation O0 sampled before S1 is known. This quantity is
conditionally independent from all other variables when given S1.

Our goal is to find a policy with maximum value, where value is the expected cummulative reward given to
the agent when operating under the given policy.

V (π) = Eπ

[ H∑
h=1

Rh | S1 ∼ µ

]

Learning is done in an offline setting. Formally, we are given a trajectory generated by the environment
and some behavioral policy πb. Importantly, we allow the behavioral policy πb to access the underlying
state of the environment. The behavioral policy induces a probability distribution Pb over the space of all
trajectories. We can take independent samples from Pb to generate trajectories.

Certain problems arise when using an offline dataset for learning. Results from causal inference state that if
the elements within the dataset depend on hidden factors like Sh, then distributional shifts will occur. We
unfortunately must accept results from causal inference without proof to retain our focus on reinforcement
learning. For now, understand that taking empirical estimations of conditional expectations from our dataset
will result in suboptimal learning.
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2 Learning Setting

To handle the distributional shift, we apply the idea of confounding bridge functions from proximal causal
inference to determine the value of any given policy. The first two assumptions defines the notion of the
confounding bridge function and assume these functions exist.

Assumption 1 (Negative control). Under the offline data distribution, the initial observation O0 is
presampled before the decision process begins [4, 2, 3].

O0 ⊥ Oh, Oh+1, Rh | Sh, Ah,Γh−1

Assumption 2 (Confounding bridge functions). Let π be any history dependent policy. We assume
that, for each time step h, there exists a set of value bridge functions {bπh : A×O×H → R} that
satisfy the following conditional moment equation, where bπH+1 is defined to be a zero function.

Eπb [bπh (Ah, Oh,Γh−1) | Ah, O0,Γh−1]

= Eπb

[
πh (Ah | Oh,Γh−1) ·

(
Rh +

∑
a′

bπh+1 (a
′, Oh+1,Γh)

)
| Ah, O0,Γh−1

]

Assumption 3 (Completeness). For any time step h, any measurable function gh : S×A×H → R
will satisfy the following with high probability.

Eπb [gh (Sh, Ah,Γh)] = 0 ⇐⇒ gh (Sh, Ah,Γh) = 0

The completeness assumption [2, 3] ensures that some important quantities can be measured as functions
of observable trajectories without knowing the underlying state of the environment. Confounding bridge
functions use observable quantities to extract data from the dataset. This structure for a value bridge
function represents individual components of an expectation summation and is used across all algorithms
discussed here.

Theorem 1 (Value Identification). Under Assumptions 1, 2, and 3, the value associated with a policy
π can be expressed as the following.

V (π) = Eπb

[∑
a∈A

bπ1 (a,O1)

]

Proof. What follows is a sketch of the proof for Theorem 1 [2]. The first step is to determine the expected
values of specific desirable quantities when conditioning on the underlying state Sh. We can use the laws
of conditional expectation and algebraic manipulation to rewrite the expression in Assumption 2 as the
following.

Eπb [Eπb [bπh (Ah, Oh,Γh−1) | Ah, Sh,Γh−1] | Ah, O0,Γh−1]

= Eπb

[
Eπb

[
πh (Ah | Oh,Γh−1) ·

(
Rh +

∑
a′

bπh+1 (a
′, Oh+1,Γh)

)
| Ah, Sh,Γh−1

]
| Ah, O0,Γh−1

]

The inner conditional expectations are functions of Ah, Sh, and Γh−1, so they are members of the same
function class as the statement of Assumption 3. As a result, we can use the assumption to state the
following. Note that although similar to Assumption 2, this statement conditions on the current state of the
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environment, rather than the initial observation.

Eπb [bπh (Ah, Oh,Γh−1) | Ah, Sh,Γh−1]

= Eπb

[
πh (Ah | Oh,Γh−1) ·

(
Rh +

∑
a′

bπh+1 (a
′, Oh+1,Γh)

)
| Ah, Sh,Γh−1

]

Next, we can use this result to state the following as a lemma. This statement can be proved by applying
induction on the time step h using h = H as the base case.

Eπb

[∑
a∈A

bπh (a,Oh,Γh1) | Sh,Γh−1

]
= Eπ

 H∑
j=h

Rj | Sh,Γh−1


After proving this lemma, the correctness of our theorem follows easily. Note that Γ0 is an empty set.

Vπ = Eπ

[ H∑
h=1

Rh

]
= ES1∼µ

[
Eπ

[ H∑
h=1

Rh | S1,Γ0

]]

= ES1∼µ

[
Eπb

[∑
a∈A

b1 (a,O1,Γ0) | S1,Γ0

]]
= Eπb

[∑
a∈A

b1 (a,O1)

]

This theorem is important because it states that if we have the value bridge function associated with a policy,
we can calculate the expected value of the policy.

2.1 Estimating the Value Bridge Function

It then remains to calculate the value bridge function. To do this, our algorithms use a minimax estimation
procedure introduced by Dikkala et al [1]. More specifically, we can use backward induction on the time step

h and calculate b̂πh when given bπh+1 by minimizing a loss function Lπ
h. First, we can define the following.

lπh

(
b̂πh, b

π
h+1

)
(Ah, O0,Γh−1)

= Eπb

[
b̂πh (Ah, Oh,Γh−1)− πh (Ah | Oh,Γh−1) ·

(
Rh +

∑
a′

bπh+1 (a
′, Oh+1,Γh)

)
| Ah, O0,Γh−1

]

Then we can define our loss function Lπ
h to be the expected squared magnitude of this difference, where the

expectation is taken over Ah, O0, and Γh−1.

Lπ
h

(
b̂πh, b

π
h+1

)
= Eπb

(
lπh

(
b̂πh, b

π
h+1

)
(Ah, O0,Γh−1)

)2
However, we still face the issue that using the empirical estimates from the dataset to minimize this loss will
result in distributional shifts. To resolve this issue, we apply the Fenchel duality and the interchangeability
principle to rewrite the loss function as the following, where λ > 0 and G is a function class to be discussed
below.

Lπ
h

(
b̂πh, b

π
h+1

)
= 4λ ·max

g∈G
Φλ

π,h

(
b̂πh, b

π
h+1, g

)
Φλ

π,h

(
b̂πh, bh+1, g

)
= Eπb

[
lπh

(
b̂πh, b

π
h+1

)
(Ah, O0,Γh−1) · g (Ah, O0,Γh−1)− λg (Ah, O0,Γh−1)

2
]

This is stated without proof because it strays too far from our focal topic of reinforcement learning. However,
it is worth having an intuitive understanding of this claim. We introduce an adversary to our learner that

3



would like to highlight the Ah, O0,Γh−1 in which our learner is performing poorly. The adversary maximizes
a weighted sum of lπh

(
bπh, b

π
h+1

)
across every possible trajectory Ah, O0,Γh−1, scaled by the probability that

the trajectory occurs. The adversary must also work under a budget, as determined by the parameter λ.

The results from Dikkala et al [1] state that minimizing the empirical estimate of this revised loss function
allows for a fast statistical rate of convergence as dictated by Õ

(
n−1/2

)
. Then we can define the following

operator to empirically estimate bπh when given bπh+1.

b̂πh
(
bπh+1

)
∈ argmin

b∈B

[
max
g∈G

Φ̂λ
π,h

(
b, bπh+1, g

)]
The algorithms we will discuss use this method of minimax estimation to determine the value bridge function
for a given policy at every time step, with some mild technical assumptions about the function classes B and
G illustrated below.

Assumption 4 (Function classes). We assume the following about the function classes B and G.
• All functions in B are bounded above by MB and all functions in G are bounded above by MG.
• G is star-shaped and symmetric, i.e. cg ∈ G for all g ∈ G and c ∈ [−1, 1].

• The localized population Rademacher complexity of G with radius α is bounded above by α2

MG
.

• The function class G is complete and the function class B is realizable, as defined below.

1

2λ
lπh (b, bh+1) ∈ G bπh ∈ B ∀h ∈ [H] ∀bh, bh+1 ∈ B ∀π ∈ Π

3 Pessimism

The first algorithm we will discuss creates a confidence region around the minimax estimation and applies
pessimism to choose a policy. First, define bπ = (bπ1 , · · · , bπH). For each policy π, construct the confidence
region as follows.

CRπ (ϵ) =

{
b ∈ B× · · · × B | max

h∈[H]

[
max
g∈G

Φ̂λ
π,h

(
bh, b

π
h+1, g

)
−max

g∈G
Φ̂λ

π,h

(
bπh, b

π
h+1, g

)]
≤ ϵ

}
The choice of ϵ determines the size of the confidence region. We then determine the pessimistic estimate of
the policy’s value by taking the worst possible value bridge function that lies within the confidence region.
The output of this pessimism algorithm is the policy that maximizes this pessimistic estimate.

V̂ (π) = min
b∈CRπ(ϵ)

Eπb

[∑
a∈A

b1 (a,O1)

]
π̂ ∈ argmax

π∈Π
V̂ (π)

With the standard partial coverage assumption, we now seek to prove the optimality of this choice.

Assumption 5 (Partial coverage). We assume that for any policy π and any time step h, there exists
a set of confounding bridge functions {qπh : A×O → R} that satisfy the following.

Eπb [qπh (Ah, O0) | Ah, Sh,Γh−1] =
µh (Sh,Γh−1)

πb
h (Ah | Sh)

µh (Sh,Γh−1) =
Pπ
h (Sh,Γh−1)

Pπb

h (Sh,Γh−1)

Additionally, we define the concentrability coefficient Cπ∗
for the optimal policy π∗ as the following

and assume that Cπ∗
is finite.

Cπ∗
= max

h∈[H]
Eπb

(
qπ

∗

h (Ah, O0)
)2

<∞
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Theorem 2 (Optimality of pessimism). Choose ϵ as follows, where C1, C
′
1, c1, and c2 are global

constants.

ϵ =
1

n
· C1 ·M2

BM
2
G · ψ ψ = log

|B| · |Π| · H
min

{
δ, 4c1 · e−c2nα2

}
Under Assumptions 1, 2, 3, 4, and 5, we have the following guarantee.

SubOpt (π̂) ≤ C ′
1 HMBMG

√
Cπ∗ψ

n

Proof. What follows is a brief sketch of Theorem 2, as shown by Lu et at [4].

First, for notational convenience, define the following, where Ê indicates an empirical measurement.

F (b) = Eπb

[∑
a∈A

bπ1 (a,O1)

]
F̂ (b) = Êπb

[∑
a∈A

bπ1 (a,O1)

]

The estimation for the value bridge requires a backpropagation through time. We must show that the error
from the first estimation does not explode as we backpropagate. This is summarized through the following
lemma, which states that the error reflected in the value measurement is bounded by the sum of the local
error at each time step.

Lemma 1. Take any arbitrary π and consider its true value bridge function bπ. Let Cπ be the concentrability
coefficient for π under the behavioral policy. Now consider any value bridge function b. We can show the
following.

F (bπ)− F (b) ≤
H∑

h=1

√
Cπ · Lπ

h (bh, bh+1)

We also must determine the validity of the established confidence regions, which can be shown as the
following.

Lemma 2. We choose the radius ϵ of our confidence regions as the following, where ψ is defined in Theorem
2.

ϵ = C1
λ+ 1

λ
·M2

BM
2
G · ψ

n

Then with probability greater than 1− δ, the true value bridge function bπ lies within the confidence interval.
Furthermore, we can bound the error of the minimax estimation at each time step by the following, where C̃
is a global constant.

√
Lπ
h (bh, bh+1) ≤ C̃1MBMG

√
λ+ 1

λ
· ψ
n

With these results, we can prove Theorem 2. First, decompose the suboptimality into three separate com-
ponents.

SubOpt (π̂) = Vπ∗
−V π̂ = F

(
bπ∗

)
− F

(
bπ̂
)

≤
[
F
(
bπ∗

)
− F̂

(
bπ∗

)]
+
[
F
(
bπ∗

)
− F̂

(
bπ̂
)]

+
[
F̂
(
bπ̂
)
− F

(
bπ̂
)]

5



The outer terms can be bounded by the Hoeffding bound and concentration inequalities. To bound the inner
term, we condition upon the event that the true value bridge function lies within the confidence region and
apply the definition of π̂. Using these substitutions, we gain the following.

SubOpt (π̂) ≤
[

max
b∈CRπ∗

(ϵ)
F̂ (b)− max

π∈Π(ϵ)
min

b∈CRπ(ϵ)
F̂ (b)

]
+ 2

√
2M2

B
n

log
|B|
δ

≤
[

max
b∈CRπ∗

(ϵ)
F̂ (b)− min

b∈CRπ∗
(ϵ)
F̂ (b)

]
+ 2

√
2M2

B
n

log
|B|
δ

≤ 2 max
b∈CRπ∗

(ϵ)

∣∣∣F̂ (b)− F̂
(
bπ∗

)∣∣∣+ 2

√
2M2

B
n

log
|B|
δ

The next step is to apply the triangle inequality to split the remaining complicated term into three separate
components. the two outer components can again be bounded by concentration inequalities.

SubOpt (π̂)

≤ 2 max
b∈CRπ∗

(ϵ)

∣∣∣F̂ (b)− F̂
(
bπ∗

)∣∣∣+ 2

√
2M2

B
n

log
|B|
δ

≤ 2 max
b∈CRπ∗

(ϵ)

∣∣∣F̂ (b)− F (b)
∣∣∣+ 2 max

b∈CRπ∗
(ϵ)

∣∣∣F (b)− F
(
bπ∗

)∣∣∣+ 2
∣∣∣F (bπ∗

)
− F̂

(
bπ∗

)∣∣∣+ 2

√
2M2

B
n

log
|B|
δ

≤ 2 max
b∈CRπ∗

(ϵ)

∣∣∣F (b)− F
(
bπ∗

)∣∣∣+ 4

√
2M2

B
n

log
|B|
δ

Finally, we apply the two lemmas to complete the proof, using the constant C ′
1 to absorb multiplicative

factors.

SubOpt (π̂) ≤ 2 max
b∈CRπ∗

(ϵ)

∣∣∣F (b)− F
(
bπ∗

)∣∣∣+ 4

√
2M2

B
n

log
|B|
δ

≤ 2

H∑
h=1

√
Cπ∗ · Lπ∗

h (bh, bh+1) + 4

√
2M2

B
n

log
|B|
δ

≤ 2

H∑
h=1

√
Cπ∗ ·

(
C̃1MBMG

√
λ+ 1

λ
· ψ
n

)
+ 4

√
2M2

B
n

log
|B|
δ

= 2H
√
Cπ∗ ·

(
C ′

1MBMG

√
ψ

n

)
+ 4

√
2M2

B
n

log
|B|
δ

≤ C ′
1 HMBMG

√
Cπ∗ψ

n

The last inequality holds because the second term takes a similar form as ψ, so the two terms can be
combined, resulting in a hidden multiplicative factor absorbed by C ′

1.

With this, we reconsider ψ. Notice that ψ actually increases polynomially with n due to the exponential
factor in the denominator. This would imply that the suboptimality does not decrease with n. However, Lu
et at [4] shows that we can simply reduce parameter α to counteract this.

ψ = log
|B| · |Π| · H

min
{
δ, 4c1 · e−c2nα2

} → c2nα
2 log

|B| · |Π| · H
min {δ, 4c1}

α = O

(
1√
n

)
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4 Improvements

To further develop this field, Hong et al [2, 3] introduced new ways to apply the minimax estimation
procedure. The goal of their improvements was to create a more computationally feasible method, addressing
the intractibility of certain minimizations used by Lu et al [4].

4.1 Policy Gradient

Namely, we decide to identify new classes of confounding bridge functions to capture different quantities
from the dataset. Recall that the value bridge function was used to identify the value of a policy. Instead,
we can identify the policy gradient. For any πθ, we assume that there exists some function fπθ

h that satisfies
the following.

Eπb [fπθ

h (Ah, Oh,Γh−1) | Ah,Γh−1, 00]

= Eπb

[(
Rh +

∑
a′

bπθ

h+1 (a
′, Oh+1,Γh)

)
∇θπθ (Ah | Oh,Γh−1) +

∑
a′

fπθ

h+1 (a
′, Oh+1,Γh)πθ (Ah | Oh,Γh−1) | Ah,Γh−1, O0

]

This gradient bridge function takes the form of the derivative of the value bridge function after applying the
product rule for differentiation. It can then be used to determine the gradient of the value with respect to
the policy’s parameters.

∇θ V (πθ) = Eπb

[∑
a∈A

fπθ
1 (a,O1)

]

The optimality of using this gradient estimation requires additional assumptions. If the behavioral policy has
full coverage and the parameter is convex and sufficiently smooth, we can establish a suboptimal guarantee
for the gradient descent algorithm [2].

Vπ∗
−max

k
Vπθk = O

(
1√
K

+
1√
n

)
+ ϵapprox

As with the online version of policy gradient, this guarantee only applies for one policy in the gradient
descent trajectory, without any statement on which.
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